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AAllggoorriitthhmm  ffoorr  BBiinnaarryy  OOppeerraattiioonnss  oonn  SSoolliidd  

GGeeoommeettrryy  RReepprreesseenntteedd  bbyy  HHaallffssppaacceess  
 

Halfspace-rep is a scheme in which solid geometry is represented in terms of a 

region of space enclosed by planes (i.e. the common intersection of a collection 

of halfspaces). Such a solid must be convex. 

 

The algorithm given here is believed to be conclusive as it has been thoroughly 

tested in a variety of circumstances. It does not always result in an optimal 

solution, either in terms of the number of faces, or the number of brushes in the 

result. 

 

To avoid confusion, a region of space enclosed by a number of planes will be 

termed a brush and a collection of brushes will be termed an object. Since the 

result of a solid set operation on two brushes is not necessarily convex, it must 

be given as an object which consists of zero or more brushes. 

 

Listing 1 describes the algorithm. It relies on the fact that when a brush is 

divided by a plane, both segments are themselves brushes, since they are still 

regions bounded by planes. 

 

Given two input brushes A and B, the difference (A-B), intersection, or 

union can be returned. The algorithm recursively divides brush A by the planes 

of brush B. After each division, the front region is added to the difference 

object, and the back region is considered to be brush A. 

 

Note that a polygon should only be considered in front of a plane if all of its 

vertices are in front of that plane. Note also, that ααααpolygon is the part of αααα 

behind all other planes in A. 
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let difference = new object 

let intersection = new object 

let union = new object 

 

for ββββ = each plane in brush B 

{ 

   let frontbr = new brush 

   let backbr = new brush 

 

   for αααα = each plane in brush A 

   { 

      let ααααpolygon = αααα clipped against all other planes in A 

  

      if ααααpolygon is in front of ββββ: add αααα to frontbr 

      if ααααpolygon is behind ββββ: add αααα to backbr 

      if ααααpolygon is divided by ββββ: add αααα to frontbr and backbr 

   } 

 

   if backbr ≠≠≠≠ ∅∅∅∅ and frontbr ≠≠≠≠ ∅∅∅∅: 

   { 

      add ββββ to backbr 

      add (ββββ with inverse normal) to frontbr 

   } 

 

   set A = backbr 

   add frontbr to difference 

} 

add A to intersection 

union = difference 

add B to union 

 

Listing 1 
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Figure 1 shows an example, viewed orthographically. A is shown in blue and 

turquoise, and B in green and turquoise in (a). In (b), the situation during the 

execution of the first for loop is shown. The orange segment shows frontbr, 

which is added to difference. (c) shows the situation several cycles later. In 

(d), the final difference is shown is orange, and the intersection in 

turquoise. Note that the brushes in difference are never divided by ββββ. 

 

The algorithm returns a correct result for any 

arrangement of A and B, including when A⊃⊃⊃⊃B, when 

A⊂⊂⊂⊂B, when A and B partially intersect, and when A 

and B do not intersect at all. 

 

In Figure 1(c), ββββ and an instance of αααα are coplanar. 

There are two ways in which ββββ can be coplanar with 

αααα - their normals can have identical or opposing 

directions. In both situations, ββββ should be considered 

in front of αααα. However, a further optimisation can be 

applied to the algorithm; when αααα and ββββ are co-planar 

with opposing directions, A does not intersect B, and 

the result is known. 

 

Figure 2 shows rendered images of a difference 

operation, performed using this algorithm. 

 

In order to calculate the result of a solid set 

operation on two objects, every brush in one object 

must be compared with every brush in the other 

object using the algorithm in Listing 1. Simple 

bounding sphere tests may be used to avoid 

unnecessary comparisons. 

(a)  

(b) 

(c) 

 

 (d) 

Figure 1 
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Images of Implemented Software 

 

 

 

(a)    (b) 

(c)    (d) 

Figure 2 - a solid set operation, performed using the algorithm described above. 

(a) and (b) show the initial position of two brushes, rendered as textured solids and 

wireframes respectively. (c) and (d) show the resultant brushes after a difference 

operation. 


