

BEN BRADLEY DOT COM

PAGE 1 OF 4

AAllggoorriitthhmm ffoorr BBiinnaarryy OOppeerraattiioonnss oonn SSoolliidd

GGeeoommeettrryy RReepprreesseenntteedd bbyy HHaallffssppaacceess

Halfspace-rep is a scheme in which solid geometry is represented in terms of a

region of space enclosed by planes (i.e. the common intersection of a collection

of halfspaces). Such a solid must be convex.

The algorithm given here is believed to be conclusive as it has been thoroughly

tested in a variety of circumstances. It does not always result in an optimal

solution, either in terms of the number of faces, or the number of brushes in the

result.

To avoid confusion, a region of space enclosed by a number of planes will be

termed a brush and a collection of brushes will be termed an object. Since the

result of a solid set operation on two brushes is not necessarily convex, it must

be given as an object which consists of zero or more brushes.

Listing 1 describes the algorithm. It relies on the fact that when a brush is

divided by a plane, both segments are themselves brushes, since they are still

regions bounded by planes.

Given two input brushes A and B, the difference (A-B), intersection, or

union can be returned. The algorithm recursively divides brush A by the planes

of brush B. After each division, the front region is added to the difference

object, and the back region is considered to be brush A.

Note that a polygon should only be considered in front of a plane if all of its

vertices are in front of that plane. Note also, that ααααpolygon is the part of αααα

behind all other planes in A.

BEN BRADLEY DOT COM

PAGE 2 OF 4

let difference = new object

let intersection = new object

let union = new object

for ββββ = each plane in brush B

{

 let frontbr = new brush

 let backbr = new brush

 for αααα = each plane in brush A

 {

 let ααααpolygon = αααα clipped against all other planes in A

 if ααααpolygon is in front of ββββ: add αααα to frontbr

 if ααααpolygon is behind ββββ: add αααα to backbr

 if ααααpolygon is divided by ββββ: add αααα to frontbr and backbr

 }

 if backbr ≠≠≠≠ ∅∅∅∅ and frontbr ≠≠≠≠ ∅∅∅∅:

 {

 add ββββ to backbr

 add (ββββ with inverse normal) to frontbr

 }

 set A = backbr

 add frontbr to difference

}

add A to intersection

union = difference

add B to union

Listing 1

BEN BRADLEY DOT COM

PAGE 3 OF 4

Figure 1 shows an example, viewed orthographically. A is shown in blue and

turquoise, and B in green and turquoise in (a). In (b), the situation during the

execution of the first for loop is shown. The orange segment shows frontbr,

which is added to difference. (c) shows the situation several cycles later. In

(d), the final difference is shown is orange, and the intersection in

turquoise. Note that the brushes in difference are never divided by ββββ.

The algorithm returns a correct result for any

arrangement of A and B, including when A⊃⊃⊃⊃B, when

A⊂⊂⊂⊂B, when A and B partially intersect, and when A

and B do not intersect at all.

In Figure 1(c), ββββ and an instance of αααα are coplanar.

There are two ways in which ββββ can be coplanar with

αααα - their normals can have identical or opposing

directions. In both situations, ββββ should be considered

in front of αααα. However, a further optimisation can be

applied to the algorithm; when αααα and ββββ are co-planar

with opposing directions, A does not intersect B, and

the result is known.

Figure 2 shows rendered images of a difference

operation, performed using this algorithm.

In order to calculate the result of a solid set

operation on two objects, every brush in one object

must be compared with every brush in the other

object using the algorithm in Listing 1. Simple

bounding sphere tests may be used to avoid

unnecessary comparisons.

(a)

(b)

(c)

 (d)

Figure 1

BEN BRADLEY DOT COM

PAGE 4 OF 4

Images of Implemented Software

(a) (b)

(c) (d)

Figure 2 - a solid set operation, performed using the algorithm described above.

(a) and (b) show the initial position of two brushes, rendered as textured solids and

wireframes respectively. (c) and (d) show the resultant brushes after a difference

operation.

